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We present a new class of integral equations for the solution of problems of scattering of
electromagnetic fields by perfectly conducting bodies. Like the classical Combined Field
Integral Equation (CFIE), our formulation results from a representation of the scattered
field as a combination of magnetic- and electric-dipole distributions on the surface of
the scatterer. In contrast with the classical equations, however, the electric-dipole operator
we use contains a regularizing operator; we call the resulting equations Regularized Com-
bined Field Integral Equations (CFIE-R). Unlike the CFIE, the CFIE-R are Fredholm equations
which, we show, are uniquely solvable; our selection of coupling parameters, further,
yields CFIE-R operators with excellent spectral distributions—with closely clustered eigen-
values—so that small numbers of iterations suffice to solve the corresponding equations by
means of Krylov subspace iterative solvers such as GMRES. The regularizing operators are
constructed on the basis of the single layer operator, and can thus be incorporated easily
within any existing surface integral equation implementation for the solution of the clas-
sical CFIE. We present one such methodology: a high-order Nyström approach based on
use of partitions of unity and trapezoidal-rule integration. A variety of numerical results
demonstrate very significant gains in computational costs that can result from the new for-
mulations, for a given accuracy, over those arising from previous approaches.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The boundary integral formulations of computational electromagnetics enjoy a number of excellent properties; most
notably, they require much smaller discretizations, for a given accuracy, than the three-dimensional discretizations implicit
in finite-element or finite-difference approximations of the associated Maxwell equations. Although, in contrast with the dif-
ferential approaches, integral equations do not give rise to sparse systems of linear equations, the smaller-sized two-dimen-
sional integral-equation discretizations can be exploited through use of fast solvers [5,8,27,30]—which lead to algorithms
that can outperform their PDE-approximating counterparts to very significant extents. The computing times required by
such fast algorithms, which generally utilize iterative Krylov-subspace-based linear algebra solvers such as GMRES [28],
grow linearly, of course, with the numbers of linear algebra Krylov-subspace iterations they require to reach a given error
tolerance. In this paper we present a new class of integral equations, that are of Fredholm type and uniquely solvable for all
real wavenumbers, which evaluate the scattering of electromagnetic waves by perfectly conducting bodies in significantly
. All rights reserved.
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smaller numbers of Krylov iterations than those required by other formulations. A variety of numerical results demonstrate
the very significant gains in computational costs that can result from the new methodology, for a given accuracy, over those
arising from previous approaches.

As suggested above, the number of iterations required by an integral-equation iterative solver to reach a given error tol-
erance depends on the integral equation used. Consider first the classical Magnetic Field Integral Equation (MFIE) and Elec-
tric Field Integral Equation (EFIE) for perfectly conducting scatterers [12,21,24], which are uniquely solvable except for an
(infinite) discrete set of wavenumbers: the values of the wavenumbers for which the unique solvability is lost coincide with
resonant frequencies of the interior Maxwell equations. The existence of such resonances impacts negatively on the numbers
of Krylov iterations required by these integral equations for frequencies close to resonance—and, certainly, at resonance both
iterative and non-iterative solvers fail to produce the correct, uniquely determined solutions of Maxwell’s equations. The
best-known approach to address this issue is based on expressing the electromagnetic fields as a superposition of magnetic
and electric-dipole distributions, thus combining the MFIE with ‘‘n� EFIE”, see Section 2; the resulting integral equation for-
mulations are referred to as the Combined Field Integral Equations (CFIE) [12,17]. The CFIE is uniquely solvable for every
wavenumber, yet, as discussed below, it generally requires large numbers of GMRES iterations for convergence.

(An alternative approach to overcome the difficulties arising from non-uniqueness of MFIE solutions, introduced in
[18,32], is based on a concept of dual surfaces. Using an artificial interior surface in addition to the actual scattering surface,
the dual MFIE integral penalizes the contribution of the eigenmodes corresponding to the resonant frequencies and renders a
uniquely solvable integral equation formulation. According to our experience, however, this equation requires large numbers
of iterations—as also does the MFIE even far from resonance; see also comments [22] concerning a certain residual ill con-
ditioning in dual-surface equations.)

As mentioned above, certain characteristics of the uniquely solvable, non-resonant CFIE do influence adversely the iter-
ation counts required by CFIE/GMRES solvers. Indeed, the EFIE operator, which is a portion of the CFIE, is a pseudodifferential
operator of order 1—that is, asymptotically, the action of the operator in Fourier space (the highest order asymptotics of
which can be uniquely defined by means of local parametrizations and windowed Fourier transforms [29,31]) amounts to
multiplication by the Fourier-transform variable. Consistent with this fact, the eigenvalues of these operators accumulate
at infinity, which causes CFIE/GMRES algorithms to require large iteration numbers for convergence to a given residual.

A number of approaches have been put forward to remedy the difficulties arising from use of CFIE-based iterative solvers,
including, most notably, algebraic preconditioners and analytical regularizers. Algebraic preconditioners, typically involving
sparse approximate inverses (see e.g. [10] and references therein), do not exploit the fine structure of the Maxwell equations
and the associated integral operators, and, in fact, they do not reduce the numbers of iterations to the extent that might be
desirable. Analytical regularizers, in turn, take into account certain subtle properties of the operators underlying the CFIE
formulation. An example of such a regularizer is the EFIE operator itself—as it results from the well known Calderón’s iden-
tities [19], the EFIE operator composed with itself equals the identity plus a compact operator. For smooth closed surfaces
this is the actual choice of the regularizer in [2,14,15]; note that the aforementioned EFIE resonances and non-uniqueness are
not eliminated by this approach. The approach presented in [15] combines the MFIE with a composition of two EFIE oper-
ators for different wavenumbers, one real and one imaginary. Like the CFIE, this coupling appears to overcome the existence
of resonant frequencies, although a proof of this fact has not been given as yet. This method was shown to stabilize the num-
ber of iterations for simple geometries in the regime of very low frequencies. (Note that the MFIE is itself perfectly suitable in
the low frequency regime.) No comments were made in [15] with regards to the behavior of these equations in the more
challenging higher-frequency context. Our own experiments in these regards show that, for a given GMRES residual, the lat-
ter formulation results in reductions in the numbers of GMRES iterations from those required by the CFIE, but that, still, it
requires higher iteration counts than those required by the methods proposed in this text. Considering the fact that, in addi-
tion, one matrix–vector product in the overall method [15] is about 1.5 times more expensive than the present counterpart
(2.5 times as expensive as the CFIE, while the present approach is only about 1.6 times as expensive as the CFIE), the ap-
proach proposed in this text can lead to significantly faster numerics (and, as it happens, higher accuracy for a given discret-
ization) than the approach [15].

A different type of regularizing operators proposed recently [1,3,6] rely on use of approximate high-frequency inverses of
the electric field operator; a related approach in the context of acoustic scattering was proposed in [4]. Since the electric field
integral operator has different pseudodifferential orders on the spaces of surface gradients and surface rotationals [22], these
approaches require decompositions into gradients and rotationals that can be effected at the level of individual elements.
Some issues need to be carefully addressed to carry this program to successful completion since, as is known [6], at the dis-
crete level the range of the high-frequency approximations of the admittance operator is not contained within the domain of
the electric field integral operator. The approach advocated in [3,6] to remedy this situation calls for use of appropriate pro-
jections onto the domain of the electric field operator. These projections can be carried out either via Gram-Schmidt orthog-
onalizations, which leads to large computational costs [6], or, more efficiently [3], using the numerical fluxes available in the
relevant lowest-order finite-element space (known variedly as Raviart–Thomas, RWG and Nédélec edge elements
[23,25,26]).

In all, these regularizers provide beneficial effects on iteration numbers, at least in the finite-element context, and for ele-
ments of the lowest order. Yet, neither theoretical nor numerical studies of the effect of these projections on the overall error
of the solutions have been published—indeed, none of the references [1,3,6,14] contain a quantitative account of the errors
resulting from the methodologies proposed for either simple or complex geometries. Efficient generalizations of these ideas
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to higher-order contexts, further, do not seem straightforward. In contrast, the globally defined regularizers introduced in
this text are directly amenable to a high-order treatment in the framework of Nyström methods [7]; a variety of numerical
results presented in Section 5 attests the high accuracy of the proposed methodology.

The numerical implementation we present of the new regularized equations is a generalization of the Nyström type ap-
proach introduced in [7]: we use overlapping partitions of unity and analytical resolution of kernel singularities to evaluate
accurately the integral operators. In particular, the extension we present of that approach is capable to treat with high-order
accuracy both the hyper-singular integrals involved in the electric integral operator as well the differential operators involved
in the electromagnetic integral equations. We present numerical results for various test geometries; in all cases our algorithm
exhibits high-order convergence.

In view of the reduced additional per-iteration costs inherent in the regularization process we propose, the significant
reductions in numbers of iterations they produce, and the high-order accuracies of the corresponding implementations,
the new regularized combined field integral equations are highly attractive alternatives to other available formulations,
including the classical CFIE as well as improved versions these equations introduced in recent times. An application of
the methodologies introduced here to the high-frequency regime requires use of some sort of acceleration technique; an
implementation based on a generalization of the equivalent-source acceleration techniques [7] to the new integral equations
is underway [9].

This paper is organized as follows: after discussing various classical integral equation formulations in Section 2, in Section
3 we introduce our regularized combined field integral equations. A high-order numerical implementation of these equa-
tions is described in Section 4. In Section 5, finally, we present a variety of numerical results produced by these implemen-
tations for low-to-medium frequencies.

2. Combined Field Integral Equations

We consider the problem of evaluating the scattered electromagnetic field ðEs;HsÞ that results as an incident field ðEi;HiÞ
impinges upon the boundary C of a perfectly conducting scatterer D. Defining the total field by ðE;HÞ ¼ ðEs þ Ei;Hs þHiÞ, the
scattered field is determined uniquely by the Maxwell equations
curl E� ikH ¼ 0; curl Hþ ikE ¼ 0 in R3 n D ð1Þ
together with the perfect-conductor boundary conditions
n� E ¼ 0 on C ð2Þ
and the radiation condition
lim
jxj!1

ðHs � x� jxjEsÞ ¼ 0; lim
jxj!1

ðEs � xþ jxjHsÞ ¼ 0 ð3Þ
uniformly in all directions x=jxj.

2.1. Direct and indirect EFIE, MFIE and CFIE formulations

A variety of integral equations for this problem exist, including those arising from the direct method (which, based on the
Stratton–Chu representation formulas [13], express the scattered fields in terms of the physical surface current), as well as
those arising from the indirect method (that relies on an integral representation based on a non-physical surface density, as
discussed in [19]). As is well known, not all possible integral equation formulations for the Maxwell equations are uniquely
solvable for all real values of the wavenumbers k: the integral operators underlying some of these equations are not invert-
ible for the values of k that coincide with the eigenvalues of the interior Maxwell problem in D. This is indeed the case for two
of the best known such integral equations: the Magnetic Field Integral Equation (MFIE) and the Electric Field Integral Equa-
tion (EFIE) [19]; any numerical method based solely on one of these equations will fail to produce a correct approximate
solution at and around the resonant frequencies.

The classical approach to overcome this difficulty is based on lumping the MFIE and EFIE formulations into the Combined
Field Integral Equation (CFIE), as originally proposed by Harrington and Mautz [17]. As mentioned above, as an alternative to
the classical direct EFIE, CFIE and MFIE equations just considered, all of which are based on use of the Stratton–Chu formulas,
solutions to the Maxwell equations can be sought [12] in terms of corresponding solutions to an indirect Combined Field
Integral Equation. The direct and indirect combined field equations are uniquely solvable throughout the electromagnetic
spectrum, and can thus be utilized as a basis for numerical methods for scattering problems. With the advent of fast algo-
rithms based on iterative linear algebra solvers [28], however, a difficulty inherent in the CFIE formulations became appar-
ent: iterative solvers based on the CFIE require large numbers of iterations; see Section 5.

In detail, the direct methods use the Stratton–Chu formulas to express the electric and magnetic fields in terms of the
physical current J ¼ n�H on C, leading [24] to the classical MFIE
J
2
þKJ ¼ n�Hi ð4Þ
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and EFIE
T J ¼ �n� Ei: ð5Þ
Here the operators K and T , which map tangential fields a into tangential fields, are defined by
ðKaÞðxÞ ¼ nðxÞ �
Z

C
ryGkðx� yÞ � aðyÞdrðyÞ ð6Þ
and
ðT aÞðxÞ ¼ iknðxÞ �
Z

C
Gkðx� yÞaðyÞdrðyÞ þ i

k
nðxÞ � PV

Z
C
rxGkðx� yÞdivCaðyÞdrðyÞ ¼ ðikn� Sk þ

i
k
T 11divCÞa; ð7Þ
where
ðSkaÞðxÞ ¼
Z

C
Gkðx� yÞaðyÞdrðyÞ ð8Þ
and
ðT 11/ÞðxÞ ¼ nðxÞ � PV
Z

C
rxGkðx� yÞ/ðyÞdrðyÞ ð9Þ
and where Gk is the outgoing fundamental solution of the Helmholtz equation, Gkðx; yÞ ¼ Gkðx� yÞ ¼ eikjx�yj

4pjx�yj; the hyper-sin-
gular integral in the definition of K should be interpreted in the sense of Cauchy principal value.

The indirect methods, on the other hand, express the scattered electric field in the form of either a magnetic dipole distri-
bution corresponding to a tangential density m
EðxÞ ¼ ðMmÞðxÞ ¼ curl
Z

C
Gkðx� yÞmðyÞdrðyÞ ð10Þ
or an electric-dipole distribution corresponding to the tangential density e
EðxÞ ¼ ðEeÞðxÞ ¼ curl curl
Z

C
Gkðx� yÞeðyÞdrðyÞ; ð11Þ
while the scattered magnetic field is given by HðxÞ ¼ 1
ik curl EðxÞ. Classical continuity properties of vector potentials yield the

Indirect Magnetic Field Integral Equation (IMFIE)
m
2
�Km ¼ n� Ei ð12Þ
and the Indirect Electric Field Integral Equation (IEFIE)
ikT e ¼ n� Ei: ð13Þ
The integral equation formulations EFIE (5) and IEFIE (13) differ only by a multiplicative constant and IMFIE (12) and MFIE
(4) share the same spurious resonances, as the spectrum of the integral operator K is symmetric with respect to the origin
[19]; thus, from the point of view of iterative solvers the direct and indirect formulations have essentially identical behavior.

The uniquely solvable CFIE [17] is given by a combination of the MFIE and EFIE of the form
J
2
þKJþ g1ðn� T ÞðJÞ ¼ n�Hi � g1n� ðn� EiÞ ð14Þ
with a positive coupling constant g1. The corresponding Indirect Combined Field Integral Equation (ICFIE), on the other hand,
assumes a representation of the type
EðxÞ ¼ ðMaþ ig2Eðn� aÞÞðxÞ ¼ curl
Z

C
Gkðx� yÞaðyÞdrðyÞ þ ig2 curl curl

Z
C

Gkðx� yÞðnðyÞ � aðyÞÞdrðyÞ; ð15Þ

HðxÞ ¼ 1
ik

curl EðxÞ; x 2 R3 n D; ð16Þ
with a positive coupling parameter g2, where a is a vector field tangent to C. The electromagnetic field just introduced is an
outgoing solution to the Maxwell equations with perfectly conducting boundary conditions provided the tangential density a
is a solution to the integral equation
a
2
�Kaþ g2kT ðn� aÞ ¼ �n� Ei: ð17Þ
Standard arguments based on integration by parts show that the integral Eq. (17) is uniquely solvable for all g2 > 0
[12].
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3. Regularized Combined Field Integral Equations (CFIE-R)

We introduce regularizing operators n�R in terms of single layer operators with complex wavenumbers which, as dem-
onstrated in Section 5, can lead to significant savings of computing time.

3.1. Generalities

We seek representations of the electromagnetic fields of the form
EsðxÞ ¼ curl
Z

C
Gkðx� yÞaðyÞdrðyÞ þ in curl curl

Z
C

Gkðx� yÞðnðyÞ � ðRaÞðyÞÞdrðyÞ; ð18Þ

HsðxÞ ¼ 1
ik

curl EðxÞ; x 2 R3 n D; ð19Þ
where R ¼ Rk denotes an operator such that, for any n > 0, k > 0, the operator I=2þ nkT � ðn�RÞ equals the sum of an
invertible operator and a compact operator in the relevant Sobolev spaces of electromagnetic integral equations (see Theo-
rem 3.1 for details); we call n�R a right regularizer for the CFIE. Just as it is the case for the representations considered in
Section 2, Eqs. (18) and (19) define outgoing solutions to the Maxwell equations with perfect-conductor boundary conditions
provided the tangential density a is a solution to the integral equation
a
2
þKaþ nkT ðn� ðRaÞÞ ¼ �n� Ei; ð20Þ
this equation will be referred in what follows as the Indirect Regularized Combined Field Integral Equation (ICFIE-R). If n�R
is chosen as a right regularizing operator for T , the integral operator on the left-hand side of (20) is a Fredholm operator, and,
thus, the unique solvability of Eq. (20) is equivalent to the injectivity of the left-hand side operator.

If, in turn, n�R is a left regularizing operator for T , a Direct Regularized Combined Field Integral Equation (DCFIE-R) can
be obtained by combining the MFIE (4) with the composition of n�R and the EFIE (5):
J
2
�KJþ nkðn�RÞ � T J ¼ n�Hi � nkðn�RÞðn� EiÞ: ð21Þ
Before considering the actual construction of the operators R, it is useful to note that a classical regularizing operator
for T is provided for smooth closed surfaces by the operator T itself, as it follows from Calderón projection formulas
[11,19]
T 2 ¼ � I
4
þK2 ð22Þ
together with the fact that the operator K is compact. This choice of a regularizing operator for T is at the heart of the efforts
in [1,2,14,15]. Although certain simplifications can be taken into account to obtain as efficient numerical evaluations of the
operator T 2 as possible (which relate to the fact that the second term in the definition (7) of T composed with itself yields
zero), the work required to evaluate accurately the composition T 2 is still comparable to (higher than!) double the work re-
quired to evaluate T once; see Section 5. In our construction, in contrast, the evaluation of the regularizing operator entails
an effort comparable to the significantly less expensive evaluation of the first term in the definition (7). Additionally, as men-
tioned in the introduction, our formulation leads to reduced numbers of iterations.

We use regularizing operators of the form
R ¼ SK : ð23Þ
for general surfaces C.

Remark 3.1. Note that, for certain values of K, the regularizing operator (23) does not make the integral Eq. (20) uniquely
solvable—as it can be seen, for a spherical scatterer, using closed-form expressions of the action of the various integral
operators on spherical harmonics. As shown in what follows, however, the property of unique solvability is retrieved if the
‘‘wavenumber” K is chosen to be purely imaginary—equal to, say, ik1, and arbitrary constants k1 P 0 and n > 0 are used.

In what follows we denote the regularized indirect operator by
ICFIE-RK ¼
I
2
þKþ nkT � ðn� SKÞ; ð24Þ
for the corresponding direct regularized operator, in turn, we will use the notation
DCFIE-RK ¼
I
2
�Kþ nkðn� SKÞ � T : ð25Þ
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3.2. Existence and uniqueness

We first establish that, for general closed and smooth manifolds C, the composition T � SK can be represented as a com-
pact perturbation of an invertible diagonal matrix operator. The main idea in the proof is to use the regularity properties of
integral operators with pseudo-homogeneous kernels [29] in the context of the Sobolev spaces H

m�1
2

div ðCÞ of Hm�1
2 vector fields

that admit an Hm�1
2 divergence [19].

In what follows we use the notations and relations [22,31]:
curl
�!

C/ ¼ rC/� n; ð26Þ
curlCa ¼ divCða� nÞ; ð27Þ

DC/ ¼ divCrC/ ¼ �curlCcurl
�!

C/; ð28Þ
where a is a tangential vector field and where / is a scalar function defined on C. A few relevant properties of the Helmholtz
decomposition in Sobolev spaces are mentioned in the following Remark.

Remark 3.2. Let C be a smooth surface. For a given tangential vector field a 2 Hm�1=2
div ðCÞ we have the Helmholtz

decomposition [19,22]
a ¼ rC/þ curl
�!

Cwþx; ð29Þ
where x is a harmonic vector field (i.e. its divergence and curl vanish), and where, using the right-inverse [31]
D�1

C : HsðCÞ ! Hsþ2ðCÞ of the Laplace-Beltrami operator DC, the functions / and w in the Helmholtz decomposition (29)
are given by / ¼ D�1

C divC a and w ¼ �D�1
C curlC a. (Note that for simply connected surfaces C we necessarily have x ¼ 0.)

Clearly for a tangential vector field a 2 Hm�1=2
div ðCÞ we have / 2 Hmþ3=2ðCÞ and w 2 Hmþ1=2ðCÞ [19]; the corresponding projec-

tion operators onto the spaces of gradients, rotationals and harmonic fields will be denoted by
PrC ¼ rCD�1
C divC : Hm�1=2

div ðCÞ ! Hmþ1=2
div ðCÞ; ð30Þ

P
curl
�!

C

¼ curl
�!

CD�1
C curlC : Hm�1=2

div ðCÞ ! Hm�1=2
div ðCÞ; and ð31Þ

P
rC\ curl
�!

C

¼ I �PrC �P
curl
�!

C

: Hm�1=2
div ðCÞ ! Hm�1=2

div ðCÞ: ð32Þ
We are now ready to state and prove the main result of this section. Using the notation A � B for two operators A and B
that differ by a compact operator from H

m�1
2

div ðCÞ to itself, we have

Theorem 3.1. Let R ¼ SK . Then the operator on the left-hand side of Eq. (20) satisfies
I
2
þKþ nkT � ðn� SKÞ �

1
2

PrC þ
1
2
þ in

4

� �
P

curl
�!

C

þ 1
2
þ in

4

� �
P
rC

T
curl
�!

C

: ð33Þ
Further, for K ¼ ik1; k1 P 0; and n > 0, Eq. (20) admits one and only one solution in the space H
m�1

2
div ðCÞ for any integer m P 0.

Proof. We first study the electric field integral operator T defined in Eq. (7). As is well known, denoting by HsðTMðCÞÞ the
classical Sobolev space of tangential vector fields [22], we have [19,22]
n� Sk : HsðTMðCÞÞ ! Hsþ1ðTMðCÞÞ ð34Þ
and thus, in view of either [12, p. 51] or [22]
T 11 : HsðTMðCÞÞ ! HsðTMðCÞÞ: ð35Þ
To study the composition T � ðn� SKÞwe consider the action of this operator on the individual gradient, rotational and har-
monic vector fields that make up the Helmholtz decomposition of an arbitrary vector field.

An argument based on integration by parts tells us that the action of the operator n� SK on gradient fields can be
expressed in the form
ðn� SKÞðrC/ÞðyÞ ¼ �curl
�!

C

Z
C

GKðy � zÞ/ðzÞdrðzÞ þ nðyÞ �
Z

C

@GKðy � zÞ
@nðzÞ nðzÞ/ðzÞdrðzÞ: ð36Þ
(To establish (36), integrate by parts the left-hand side of this equation and express the surface gradient of G as a three-
dimensional gradient minus the normal derivative times the normal. We thus obtain
nðyÞ �
Z

C
ryGKðy � zÞ/ðzÞdrðzÞ þ

Z
C

@GKðy � zÞ
@nðzÞ nðyÞ � nðzÞ/ðzÞdrðzÞ;
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which can easily be seen to equal the right-hand side of (36).) We can recast the identity (36) in the form
ðn� SKÞ �PrC ¼ �curl
�!

CSKD�1
C divC þ S2D

�1
C divC; ð37Þ
where S2 is the second operator on the right-hand side of Eq. (36). The kernel of the operator S2 equals the kernel of the dou-
ble layer potential, and, thus, S2 is a smoothing operator (it maps Hs into Hsþ1 [19,22]). Hence, S2D

�1
C divC maps

H
m�1

2
div ðCÞ ! Hmþ5

2ðTMðCÞÞ since another two orders of regularity are gained from the operator D�1
C divC (note that

/ 2 Hmþ3=2ðCÞ for a 2 Hm�1=2
div ðCÞ!). Substituting (37) on the right-hand side of (7) and taking into account the identity

divC curl
!

C
¼ 0 together with Eqs. (34) and (35), we see that the operator
½T � ðn� SKÞ� �PrC � S3 ¼ ikðn� SkÞ � ðn� SKÞ �PrC þ
i
k
T 11divCðS2D

�1
C divCÞ ð38Þ
is a continuous operator S3 : H
m�1

2
div ðCÞ ! Hmþ3

2ðTMðCÞÞ, and thus is compact from H
m�1

2
div ðCÞ into itself.

We now study, in turn, the action of the composition T � ðn� SK Þ on rotational vector fields. To do this, we first note
that
n� SK ¼ n� Sk þ S4; ð39Þ
where on account of the Taylor expansion of the GK � Gk [22], the operator S4 is regularizing by two orders, that is, S4 is a

continuous operator S4 : HsðTMðCÞÞ ! Hsþ2ðTMðCÞÞ. Since ðn� SkÞ curl
�!

Cw

� �
¼ 1

ik T curl
�!

Cw

� �
(divCcurl

�!
C ¼ 0) we obtain the

relation complementary to (38):
½T � ðn� SKÞ� �P
curl
�!

C

¼ 1
ik
½T � T � �P

curl
�!

C

þ S5; ð40Þ
where S5 ¼ �T ðS4D
�1
C curlCÞ : HsðTMðCÞÞ ! Hsþ2ðTMðCÞÞ is a continuous operator, and, hence, compact from H

m�1
2

div ðCÞ into it-
self. Using Calderón’s identities (22) and the fact that for smooth C the magnetic field operator K is compact from H

m�1
2

div ðCÞ to
itself, we obtain from (40)
½T � ðn� SKÞ� �P
curl
�!

C

¼ i
4k

P
curl
�!

C

þ S6; ð41Þ
where S6 is compact from H
m�1

2
div ðCÞ to itself.

Finally, we study the action of the operator T � ðn� SKÞ on harmonic vector fields, see Remark 3.2. Since such vector fields
are divergence free and the space of harmonic fields is itself finite-dimensional (its dimension equals twice the first Betti
number associated to C), the argument leading to (41) applies in this case as well, and we thus obtain
½T � ðn� SKÞ� �P
rC\ curl
�!

C

¼ i
4k

P
rC\ curl
�!

C

þ S7; ð42Þ
where P
rC

T
curl
!

C

denotes the projection onto the space of harmonic vector fields and S7 is a compact operator from H
m�1

2
div ðCÞ to

itself.
Eqs. (38), (41) and (42) tell us that, up to compact operators, the composition T � ðn� SKÞ equals i=ð4kÞ times the sum of

the projections onto the spaces of surface rotationals and harmonic vector fields. Since K : H
m�1

2
div ðCÞ ! H

mþ1
2

div ðCÞ is a compact
operator from Hm�1

2
div ðCÞ to itself, we obtain the claimed relation (33).

Having established that the operator underlying the formulation (20) equals the sum of an invertible operator and a
compact operator in the space Hm�1

2
div ðCÞ, we will prove next that the choice K ¼ ik1; k1 P 0, renders the operators in (20)

injective and thus invertible as a result of the Fredholm alternative; this will conclude the proof of the Theorem. To establish
injectivity, let a be a solution of Eq. (20) with Ei ¼ 0. It follows that the electromagnetic field ðEs;HsÞ defined by (18) and (19)
is an outgoing solution to the Maxwell equations in the unbounded domain R3 n D whose boundary values Es

þ on C satisfy
the homogeneous conditions n� Es

þ ¼ 0. In view of the uniqueness of radiating solutions for exterior Maxwell problems [12]
we obtain Es ¼ Hs ¼ 0 identically in R3 n D. The standard jump relations of vector layer potentials then show that the limiting
values of the electric field defined by (18) and (19) as x approaches C from the interior of D satisfy the relations
�n� Es
� ¼ a; �n� curl Es

� ¼ ink2n� SK a; on C:
Taking the scalar product of the second of these relations with the conjugate of the first one, using standard vector relations,
integrating over C and appealing to the divergence theorem gives
ink2
Z

C
ðSK aÞ � �adr ¼

Z
C

n� �Es
� � curl Es

�dr ¼
Z

D
fjcurl Esj2 � k2jEsj2gdx: ð43Þ
Thus, denoting fSK a; ag ¼
R
CðSK aÞ � �adr, if SK satisfies the coercivity property
\fSK a; agP 0; and fSK a;ag ¼ 0 iff a ¼ 0"
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then Eq. (43) implies that a ¼ 0 and the operator integral operator in Eq. (20) is injective. For a general surface C the coer-
civity property is satisfied in H

m�1
2

div ðCÞ for wavenumbers K ¼ ik1 [22, p. 269]: the acoustic single-layer operators Sik1 are coer-
cive on Hm�1

2ðCÞ. h

We now turn to the proof of existence and uniqueness of solution for Eq. (21); the proof is based on duality arguments.

Theorem 3.2. Let R ¼ SK . Then the operator on the left-hand side of Eq. (21) satisfies
I
2
�Kþ nkðn� SKÞ � T �

1
2
þ in

4

� �
PrC þ

1
2

P
curl
�!

C

þ 1
2
þ in

4

� �
P
rC

T
curl
�!

C

: ð44Þ
Further, for K ¼ ik1; k1 P 0, and n > 0, Eq. (21) admits one and only one solution in the space H
m�1

2
div ðCÞ for any integer m P 0.

Proof. We use the duality relations [13, p. 171]
fKu;vg ¼ fu;n�Kðn� vÞg;
fT ðn� uÞ;vg ¼ fu; T ðn� vÞg ð45Þ
of the operators K and T with respect to the bilinear form fu;vg ¼
R

C u � �v dr. Using the fact that SK ¼ Sik1 is self-adjoint with
respect to the bilinear form f�; �g, we obtain as an immediate consequence of the previous formulas that
fT ðn� SK uÞ;vg ¼ �fu;n� ½ðn� SKÞ � T �ðn� vÞg; ð46Þ
which leads to
DCFIE-RK ¼ �n� ½ðICFIE-RKÞ	ðn� �Þ�: ð47Þ
Clearly, (47) and (33) give (44). Finally, the invertibility of DCFIE-RK follows from (47) and the invertibility of ICFIE-RK . h
3.3. Choice of parameters

Consideration of a wide range of numerical experiments has suggested that the parameter values
K ¼ ik=2; n ¼ 1 ð48Þ
yield excellent rates of convergence for the Krylov subspace solvers: such parameter values can lead to significant reductions
in iteration numbers over those required by the un-regularized equations as well as equations obtained from previous pre-
conditioning strategies.

The corresponding choice of the coupling parameter g in the definition of the classical CFIE (17) was discussed in [20].
There it was established that
g ¼ 1
k

ð49Þ
yields the lowest condition number for the continuous integral operator in the case of the unit sphere; we used this value of
g to obtain all of the CFIE numerical results presented in this paper.

Remark 3.3. Our experiments indicate that the parameter g does not have a dramatic impact either on the spectral
properties of the CFIE, or on the numbers of iterations required in a GMRES solution of this integral equation. On the other
hand, since the eigenvalues of the integral operators (24) and (25) cluster around points in the complex plane away from
zero and infinity, the choice of the corresponding parameters K and n greatly influence the spectral properties of these
operators, and, consequently, the numbers of iterations required for solution of the corresponding discrete versions.

Having completed our introduction of regularizing operators we now present a high-order numerical method for the
solution of the resulting regularized integral Eq. (20).
4. Numerical implementation: a Nyström approach

In order to avoid the exceedingly costly evaluation of the kernels of the composite operators in Eqs. (20) and (21), our
implementation obtains the composition of the operators through subsequent application of high-order-accurate discretized
versions of the operators T and R. In what follows we detail our methodology for evaluation of the action of such discrete
operators on a given vector; the overall solution is ultimately obtained by means of the iterative solver GMRES [28].

Our strategy for evaluation of the relevant discrete integro-differential operators relies on use of local coordinate charts
together with fixed and floating partitions of unity (POU), as proposed in [7] for the related problem of soft acoustic scatter-
ing. The present context requires certain reformulations of the operators introduced in the previous sections, as well as sig-
nificant extensions of methods [7] to allow for differentiations of first and second order of the integral equation unknowns,
as discussed in what follows.
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4.1. Integral operators

We express both the magnetic integral operator K and the electric integral operator T in terms of integrals that only in-
volve weakly singular kernels. The procedure is rather direct for the operator K: since a is a tangential vector field, simple
manipulations on Eq. (6) lead to the expression
ðKaÞðxÞ ¼
Z

C
ðnðxÞ � nðyÞÞ � aðyÞryGkðx� yÞ þ @Gkðx� yÞ

@nðxÞ aðyÞ
� �

drðyÞ; ð50Þ
which, in view of the smoothness of the surface C, only involves weakly singular kernels. Using integration by parts [22] on
the second term in Eq. (7) and second-order derivatives of a, in turn, the operator T can also be recast in a form that involves
only weakly singular kernels:
ðT aÞðxÞ ¼ ik nðxÞ �
Z

C
Gkðx� yÞaðyÞdrðyÞ � i

k

Z
C
ðnðyÞ � nðxÞÞ � rxGkðx� yÞdivCaðyÞdrðyÞ

� i
k

Z
C

Gkðx� yÞcurl
�!

CdivCaðyÞdrðyÞ ¼ ik n� Ska� 1

k2 T 1a
� �

: ð51Þ
4.2. Surface representation and discretization

Following [7], the smooth bounded manifold C is covered by a number of overlapping coordinate patches P‘; ‘ ¼ 1; . . . ; L
of appropriate sizes, where each patch P‘, which is an open set in C, is the image of a planar coordinate open set H‘ via the
local-coordinate regular parametrization
x‘ ¼ x‘ðu‘;v ‘Þ for ðu‘; v‘Þ 2 H‘; ‘ ¼ 1; . . . ; L:
Together with the coordinate patches that cover the manifold C a subordinate partition of unity fw‘ðxÞ; ‘ ¼ 1; . . . ; Lg is used,
with the usual properties: each w‘ is smooth, non-negative, compactly supported in P‘, and

PL
‘¼1w‘ ¼ 1 throughout C.

The discretization of the densities a‘ðu‘; v‘Þ for ‘ ¼ 1; . . . ; L is obtained by means of an equidistant Cartesian sets of nodes
ðu‘n; v‘

mÞ within H‘ and corresponding nodal values a‘n;m.

4.3. Differentiation and integration

The fixed POU mentioned above can be used to reduce the evaluation of the surface integrals defining the operators K and
T to planar integrals over the setsH‘. The resulting integrands involve products of various weakly-singular kernels, Jacobian
determinants J‘, the POU functions w‘ and either the unknown density a or its derivatives of first or second order—which
arise in the ðu‘;v‘Þ coordinate expressions [16] of the differential operatorsrC and divC. Thus, each one of the integral oper-
ators L we need to consider (L ¼ K;L ¼ T and L ¼ RK ) can be expressed as a sums of integrals of the form
ðLaÞðxÞ ¼
XL

‘¼1

Z
H‘

Gðk;x;x‘ðu‘;v ‘Þ;n‘ðu‘;v ‘ÞÞw‘ðxðu‘;v ‘ÞÞJ‘ðu‘;v ‘Þ �
X

06aþb62

cabðu‘; v‘Þ@a
u‘ @

b
v‘a

‘ðu‘;v ‘ÞÞdu‘ dv ‘
; ð52Þ
where cab are coefficients arising from the coordinate forms of the differential operators mentioned above.
Since the products W ‘ðu‘;v ‘Þ ¼ w‘ðu‘;v ‘ÞJ‘ðu‘;v ‘Þ vanish to high order at the boundary of the integration domain H‘, they

can be extended by periodicity to smooth periodic functions defined in the whole plane—thus fitting the high-order trape-
zoidal-rule-integration and Fourier-series-interpolation paradigm [7]. As shown in what follows, further, this setup can be
used to enable high-order evaluation of derivatives of the smooth but generally non-periodic densities a‘.

Indeed, for the first-order derivatives with respect to u‘ we can write
W ‘ðu‘;v ‘Þ@u‘a‘ðu‘;v‘Þ ¼W ‘ðu‘;v ‘Þ1�df@u‘ ½W ‘ðu‘;v ‘Þda‘ðu‘;v ‘Þ� � a‘ðu‘; v‘Þ@u‘ ðW ‘ðu‘;v ‘ÞdÞg; ð53Þ
for an arbitrary 0 < d 6 1, with a similar formula for the v‘ derivatives. The second-order derivatives can be obtained using
this procedure twice, using each time a power d 6 1

2; we found in practice that the value d ¼ 1
4 yields a perfectly adequate

performance. In formulas (53) the differentiation operators act on smooth and periodic functions, so that the corresponding
derivatives can be obtained through differentiation of the corresponding Fourier series. For efficiency it is imperative to use
FFTs for evaluation of Fourier series; further, it is preferable to utilize POUs with small derivatives: this can be arranged by
allowing for substantial overlap amongst the patches P‘.

With these preliminaries, the high-order quadrature rule we use for the numerical evaluation of the integrals in Eq. (52) is
to a large extent identical to the one introduced in [7]. A somewhat significant difference arises in connection with the use of
imaginary wavenumbers K ¼ ik1 in the regularizing operator SK . Indeed, for real wavenumbers k, the fundamental solution
contains the oscillatory factor eikjRj, whereas for the imaginary wavenumber ik1 the corresponding factor is a decaying expo-
nential e�k1 jRj. A cursory analysis of Eq. (11) in [7] and the corresponding formulae involving decaying exponentials reveals
the trapezoidal/polar approach of [7] does not yield high-order accuracy for the decaying exponential integrands under
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consideration. To see this, let s ¼ jRðq; hÞj for a fixed h (a radius in the polar integration technique of [7]). Clearly, the func-
tions cos ks and sin ks=s are smooth (analytic) functions for all real values of q, including q ¼ 0, while the function e�k1s is not
a smooth function of q at q ¼ 0. Thus, while the terms arising in the real wavenumber case K ¼ k can be treated with high-
order accuracy by means of a combination of a two-dimensional Cartesian trapezoidal rule (for terms such as cos ks) and a
two-dimensional polar trapezoidal rule (for terms such as sin ks=s), the integral of e�k1 jRj cannot generally be evaluated with
high-order accuracy by either of these approaches. (The relation e�k1 jRj ¼ ðcoshð�k1jRjÞ þ sinhð�k1jRjÞÞ, which might in
principle suggest that an approach similar to that associated with Eq. (11) in [7] could be utilized, gives rise to significant
cancellation errors even for moderately large values of k1jRj, and thus cannot be generally used.) To address this difficulty
we re-express the integral under consideration
eL1ðu; v; hÞ ¼
Z r1

�r1

f 	‘ ðq; hÞ
jqj
jRj e

�k1 jRjdq ð54Þ
as the sum of the integrals
eL1ðu; v; hÞ ¼
Z 0

�r1

f 	‘ ðq; hÞ
jqj
jRj e

�k1 jRj dqþ
Z r1

0
f 	‘ ðq; hÞ

jqj
jRj e

�k1 jRj dq;
each one of which can be evaluated by means of a suitable one-dimensional high-order integration method—which we take
to be the composite Newton–Cotes method of order seven. This particular choice is motivated by several considerations: (1)
seven is the highest order for which the Newton–Cotes with evenly spaced data method contains only positive weights, and
thus avoids instabilities associated with the Runge phenomenon; (2) the order-seven Newton–Cotes formulae provides sta-
ble quadrature of a rather high order with a cost comparable to the trapezoidal quadrature; and (3) this method can be
implemented as long as the single additional value of the unknown density at the target point R ¼ 0 is available (as it is
for all the required polar-coordinate integrations in the approach [7]), besides the values of the density at evenly spaced
points in the interval ½�r1; r1� required by the trapezoidal quadrature.

It must be noted that, for a given angle h ¼ hi, the target point R ¼ 0 can be arbitrarily positioned within the radial interval
½�r1; r1�, and, thus, special consideration must be given to design a Newton–Cotes method on the unevenly spaced data
points that start or end at r ¼ 0. In detail, if rð0Þ1 ; . . . ; rðPÞ1 is an evenly spaced discretization of the radial interval ½�r1; r1� such
that the target-point r ¼ 0 lies in the open interval ðrðpÞ1 ; rðpþ1Þ

1 Þ; 0 6 p 6 P � 1, the discretization points rðpÞ1 and rðpþ1Þ
1 will be

used in the Newton–Cotes formulas only if, for a suitably chosen value of the tolerance etol, the relations
jrðpÞ1 j
rð1Þ1 � rð0Þ1

P etol and
jrðpþ1Þ

1 j
rð1Þ1 � rð0Þ1

P etol ð55Þ
are satisfied. This precaution must be taken in order to eliminate very large Newton–Cotes weights and associated ill-con-
ditioning that arise as the target point r ¼ 0 is too close to one of the endpoints of the radial interval that contains it. In the
case that one of the constraints (55) fails to be satisfied, the corresponding discretization point is not used in the Newton–
Cotes method. In all of the numerical results of this paper the value etol ¼ 0:01 was used.

Remark 4.1. We note that, in principle, other high-order quadrature rules such as the Chebyshev or Gauss methods could be
used in order to evaluate accurately integrals of the type (54). However, these alternatives would require interpolations
along each radial lines in order to produce the values of the densities at the radial Chebyshev and Gauss points in addition to
those already used to produce those values at evenly spaced radial points. We have found that, for accuracies of up to several
digits, the Newton–Cotes approach is perfectly adequate: it achieves accuracy levels similar to those resulting from the
Chebyshev and Gauss quadratures with a significantly more favorable overall computational cost, and hence this is our
method of choice.
5. Numerical results

In what follows we present a collection of numerical results produced by the various types of regularized integral equa-
tions under consideration, including the un-regularized direct and indirect Eqs. (14) and (17); the corresponding regularized
equations ICFIE-RK and DCFIE-RK (that is, Eqs. (20) and (21) with regularizing operator (23) and with regularization and cou-
pling parameters (48)); and the Calderón regularized CFIE introduced in reference [15] with coupling parameter (49)—which
in the remainder of this paper will be denoted by ‘‘CFIE [15]”.

Remark 5.1. The numerical methods we use for the various integral formulations under consideration produce the
necessary high-order numerical derivatives and quadratures according to the prescriptions detailed in Section 4.3. In
particular, for the integral operators that involve complex wavenumbers, quadrature points not satisfying Eq. (55) with
etol ¼ 0:01 are not used in the corresponding Newton–Cotes procedure.

Solutions of the linear systems arising from the discretization of these equations were obtained by means of the iterative
solver GMRES [28]; the results of this section demonstrate the significant reductions in the numbers of iterations that result
from use of the regularizers introduced in this text. Most of the numerical results presented in this section were obtained by
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prescribing a GMRES residual tolerance equal to 10�4; the reference solutions for the scattering experiments with plane-
wave incidences, in turn, resulted from finer-mesh discretizations and GMRES residual tolerances equal to either 10�6 or
10�8.

We present results for three scattering surfaces: a sphere of radius one, an elongated ellipsoid (of principal axes 2, 0:75
and 1) and a bean-shaped body, and we consider, amongst others, scattering problems involving the wavenumbers k ¼ 8, 16
and 32. For all the geometries considered these wavenumbers correspond to scatterers of 2:5k, 5:1k and 10:2k in diameter,
respectively. The bean shaped geometry mentioned above is described in [7]; it is given by the equation
Table 1
Converg

Patches

6� 15�
6� 31�
6� 63�
6� 127
x2

a2ð1� a3 cos pz
R Þ
þ

a1R cos pz
R

� �2

b2 1� a2 cos pz
R

� �þ z2

c2 ¼ R2
with a ¼ 0:8; b ¼ 0:8; c ¼ 1;a1 ¼ 0:3;a2 ¼ 0:4;a3 ¼ 0:1 and R ¼ 1. For efficiency, configurations requiring larger numbers of
unknowns than those we considered in this text should be dealt with by means of adequate acceleration techniques (e.g.
[7]); such cases lie beyond the scope of this paper and will be considered in our forthcoming work [9].

With exception of the bean-shaped geometry, in all of our plane-wave-incident-field examples we assumed an incident
field in the form of a plane wave propagating down the z axis with polarization ð1;0;0Þ. For the bean-shaped scatterer, in
contrast, we assumed the polarization ð0;� 1ffiffi

2
p ; 1ffiffi

2
p Þ and, in order for the configuration to give rise to multiple reflections, a

direction of incidence �
ffiffi
3
p

3 ;�
ffiffi
3
p

3 ;�
ffiffi
3
p

3

� 	
.

For every scattering experiment we present the maximum error amongst all directions x̂ ¼ x
jxj of the far field E1ðx̂Þ:
EðxÞ ¼ eikjxj

jxj E1ðx̂Þ þ O
1
jxj

� �� �
as jxj ! 1: ð56Þ
The maximum far-field error, which we denote by e1,
e1 ¼max
x̂
jEcalc
1 ðx̂Þ � Eref

1 ðx̂Þj ð57Þ
was evaluated in our numerical examples as the maximum difference (over a uniform discretization of the unit sphere
jx̂j ¼ 1, containing 5766 points corresponding to six patches and 31� 31 points per patch) between far fields Ec1 obtained
from our numerical solutions and corresponding far fields Eref

1 associated with reference solutions. The reference solutions
we used were obtained either from exact solutions, when those are available, and from finer-mesh solutions for other cases.
To obtain the latter reference solutions we used the ICFIE-R0 using fine discretizations; specifically, 47,628 unknowns were
used for the fine-mesh solutions in the case of the ellipsoid and bean configurations of diameters 2:5k and 5:1k (correspond-
ing to six patches and 63� 63 ðu; vÞ discretization points per patch), and 193,548 unknowns (corresponding to six patches
and 127� 127 points per patch) were used for the corresponding 10:2k ellipsoid and bean configurations.

Our first example, presented in Table 1, demonstrates the high-order nature of our algorithms. This table displays far-field
errors produced by the K ¼ 0 version of the CFIE-R formulation (24), for various discretizations, for the problem of scattering
of an incident plane wave by a sphere of radius 2:7k. The electromagnetic size of the problem and the samplings are identical
to those in Table 4 in [7], except that twice the number of unknowns is needed here for the two-dimensional surface density
that occurs in the electromagnetic case. The high-order convergence demonstrated in Table 1 is similar to that reported in
Table 4 of [7] for the sound-soft case: halving the mesh-size results in accuracy improvements of up to two orders of mag-
nitude. We used GMRES tolerances of 10�4 for the first two discretizations, 10�6 for the third and 10�8 for the fourth. The
high-order character of the algorithm is clearly observed.

Tables 2–4, in turn, display iteration numbers and far field errors, as well as the number of iterations required by the
GMRES solver to reach a relative residual of 10�4, for five different integral formulations and for the various scattering shapes
and sizes we consider. (The formulation CFIE-mod[15], which was not considered earlier in this text, together with associ-
ated accuracy considerations, are discussed below in this section.) For each one of the scattering surfaces (sphere, ellipsoid
and bean) we used 8748, 36,300 and 147,852 unknowns for the scattering problems of diameters 2:5k, 5:1k and 10:2k,
respectively—corresponding to six patches and 27� 27, 55� 55 and 111� 111 discretization points per patch, respectively.
Our numerical experiments indicate that the number of iterations and the accuracy of the implementation of the unprecon-
ditioned ICFIE formulation (17) are virtually identical to those produced through the implementation of the unprecondi-
tioned CFIE formulation (14); consequently, in Tables 2–4 we do not include results for the ICFIE formulation.
ence study. Scattering from a sphere of radius equal to 2:7k, using the ICFIE-RK formulation (24) with K ¼ 0.

Unknowns Discretization density �1

15 2700 3 per k 1:8� 10�2

31 11,532 6 per k 7:9� 10�4

63 47,628 12 per k 4:1� 10�5

� 127 193,548 24 per k 5:4� 10�7



Table 2
Scattering by spheres 2.5k, 5.1k and 10.2k in diameter; solutions obtained using 8748, 36,300 and 147,852 unknowns, respectively, and a number ‘‘It.” of GMRES
iterations. Residual tolerance = 10�4.

Size ICFIE-RK DCFIE-RK CFIE [15] CFIE-mod [15] CFIE

It. e1 It. e1 It. e1 It. e1 It. e1

2:5k 11 8:2� 10�4 11 7:0� 10�4 13 1:9� 10�3 11 1:5� 10�3 32 6:0� 10�4

5:1k 12 4:6� 10�4 12 1:2� 10�4 16 2:5� 10�3 14 7:0� 10�4 33 3:2� 10�4

10:2k 14 2:9� 10�4 14 2:8� 10�4 19 2:9� 10�3 18 4:8� 10�4 35 5:7� 10�4

Table 3
Scattering by ellipsoids 2.5k, 5.1k and 10.2k in diameter; solutions obtained using 8748, 36,300 and 147,852 unknowns, respectively, and a number ‘‘It.” of
GMRES iterations. Residual tolerance = 10�4.

Size ICFIE-RK DCFIE-RK CFIE [15] CFIE-mod [15] CFIE

It. e1 It. e1 It. e1 It. e1 It. e1

2:5k 13 4:1� 10�4 12 3:6� 10�4 14 1:6� 10�3 14 1:8� 10�3 49 6:2� 10�4

5:1k 12 1:3� 10�4 12 9:5� 10�5 16 4:4� 10�4 15 3:5� 10�4 52 1:4� 10�4

10:2k 13 1:2� 10�4 13 1:0� 10�4 23 6:0� 10�4 20 3:9� 10�4 55 1:7� 10�4

Table 4
Scattering by bean-shaped surfaces 2.5k, 5.1k and 10.2k in diameter; solutions obtained using 8748, 36,300 and 147,852 unknowns, respectively, and a number
‘‘It.” of GMRES iterations. Residual tolerance = 10�4.

Size ICFIE-RK DCFIE-RK CFIE[15] CFIE-mod[15] CFIE

It. e1 It. e1 It. e1 It.&e1 It. e1

2:5k 13 8:5� 10�4 12 9:2� 10�4 18 1:6� 10�3 15 1:5� 10�3 44 1:0� 10�3

5:1k 12 1:6� 10�4 12 1:4� 10�4 21 1:4� 10�3 18 7:6� 10�4 48 1:3� 10�3

10:2k 14 1:6� 10�4 14 1:6� 10�4 24 2:5� 10�3 22 5:2� 10�4 54 2:4� 10�3
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The various numerical results presented in this section support the main claims of this paper: the new regularized inte-
gral equations give rise to significant reductions in the number of iterations required by the GMRES solver, and the high-or-
der Nyström implementation we propose for their solution gives rise to highly accurate solutions: the overall accuracy of the
solutions of the integral equation formulations ICFIE-RK and DCFIE-RK is comparable to (or better than) the error correspond-
ing to ICFIE or CFIE. Since the computational time required by a matrix–vector product for the discrete regularized equations
is approximately 1.6 times that required by the classical CFIE for the same discretization, the gains in run times resulting
from the new regularized equations are very significant. These improvement levels contrast with those obtained from the
method [15] which, using of the regularizing operator T , requires computational time per iteration of the order 2.5 times
those required by ICFIE or CFIE—in addition to requiring larger numbers of iterations than the new formulations. The com-
bined effect of these CFIE[15] additional costs in the context of our test cases is demonstrated in Table 6.

(The method introduced in [15] uses the operator n�R ¼ T ðikÞ as a regularizer: the equation CFIE [15] introduced in that
contribution is given by
Table 5
Solution
regular

Unknow

2700
11,532
47,628
J
2
�KJþ ik2 T ðikÞ � T ðkÞJ ¼ n�Hi � ik2T ðikÞðn� EiÞ: ð58Þ
The numerical examples presented in [15] concern the very-low-frequency end of the spectrum; no information was pro-
vided in that text with regards to the performance of Eq. (58) in the intermediate or high-frequency regime. We thus under-
took the task of implementing and testing the formulation (58). We found that, as pointed out in [15], in order to produce an
adequate implementation of CFIE [15] it is necessary to account explicitly for the fact that the composition of the operators
T 1ðkÞ and T 1ðikÞ vanishes—a failure to account for that cancellation results in low accuracies and iteration numbers that are
up to four times larger than the CFIE [15] numbers reported in the Tables 2–4. Even after such explicit cancellations, how-
of a problem of scattering from a sphere of radius equal to 2:7k demonstrating the high-order convergence of our implementations of the various
ized equations.

ns Discretization density CFIE [15] CFIE-mod [15] ICFIE-Rik=2 ICFIE-Rik

3 per k 7:8� 10�2 7:7� 10�2 7:7� 10�2 7:3� 10�2

6 per k 3:4� 10�3 2:0� 10�3 1:9� 10�3 3:1� 10�3

12 per k 3:4� 10�4 1:4� 10�4 7:7� 10�5 3:1� 10�4



Table 6
Performance of various formulations. Scattering from objects of diameter equal to 5:4k, point source inside, using the CFIE formulation (14) with coupling
parameter g ¼ 1=k, the ICFIE-RK , formulation (24) with K ¼ k=2 and n ¼ 1, the ICFIE-R formulations (58) introduced in [15], and the modified version of the
latter given by Eq. (59).

Scatterer Unknowns CFIE (14) ICFIE-RK (24) CFIE [15] & CFIE-mod [15]

It./Tot. time Time/It. It./Tot. time Time/It. It./Tot. time (58) It./Tot. time (59) Time/It.

Sphere 10,800 12/5 m 21 s 26.75 s 8/5 m 36 s 42.0 s 13/15 m 21 s 7/8 m 15 s 70.84 s
Sphere 37,632 11/36 m 8 s 197.09 s 7/35 m 44 s 306.28 s 9/78 m 23 s 7/60 m 58 s 522.55 s
Ellipsoid 10,800 29/12 m 30 s 25.86 s 12/8 m 23 s 41.91 s 22/26 m 16 s 16/19 m 6 s 71.63 s
Ellipsoid 37,632 37/112 m 50 s 182.97 s 11/56 m 36 s 308.73 s 21/182 m 39 s 15/130 m 28 s 521.85 s
Bean 10,800 33/18 m 34 s 33.76 s 13/10 m 35 s 48.85 s 21/28 m 50 s 19/26 m 13 s 82.38 s
Bean 37,632 42/155 m 55 s 222.74 s 12/65 m 45 s 328.75 s 19/178 m 22 s 16/150 m 12 s 563.26 s
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ever, CFIE [15] gives rise to lower accuracies than those provided by the new CFIE-RK and ICFIE-RK formulations; see Tables
2–5. We have traced the source of the reduced CFIE [15] accuracy to the fact that, while our formulations are based on use of
the regularizing wavenumber K ¼ ik=2, the formulation (58) uses the parameter value K ¼ ik (in its own regularizing oper-
ator, which is different from that used in the CFIE-R approach). To demonstrate this finding we present in Tables 2–5 an addi-
tional set of results that were produced by a modified version of CFIE [15], that we label CFIE-mod [15], which is given by
J
2
�KJþ ik2

2
T ðik=2Þ � T ðkÞJ ¼ n�Hi � ik2

2
T ðik=2Þðn� EiÞ; ð59Þ
the only difference between Eqs. (58) and (59) is that the regularizer in the latter uses the parameter K ¼ ik=2 instead of the
value K ¼ ik used in the former. The results in Tables 2–5 show that use of the formulation CFIE-mod [15] yields far-field
errors comparable to the ones obtained from our CFIE-RK and ICFIE-RK formulations ðK ¼ ik=2Þ. Yet the CFIE-mod [15] still
requires significantly higher overall computing costs than the new CFIE-RK and ICFIE-RK formulations for a given accuracy, as
discussed in what follows.)

Table 6 presents a suggestive comparison between the performance of the CFIE formulation (14) and the regularized for-
mulations (24), (58) and (59) for three scattering configurations, namely, the unit sphere, elongated ellipsoid and bean-
shaped scatterer of diameters equal to 5:4k. In each case we run the solvers using two different discretizations, consisting
of 10,800 ð2� 6� 30� 30Þ and 37,632 ð2� 6� 56� 56Þ discretization points, with the GMRES residual tolerance set to
10�4. The boundary conditions were taken to equal the field of an electric point source located inside the scatterers at a dis-
tance 0.2 from the origin and 10� off the vertical axis. (For such boundary conditions the exact solution, which equals the
point-source field itself, can be used to determine the accuracy of the numerical solution. Note, however, the anomalously
small numbers of iterations required for the ICFIE formulation in the case of the spherical scatterer under the present point-
source-inside boundary conditions: compare Table 2.) Table 6 displays the total (overall) computational time, the time per
iteration, and the number of iterations required for each individual numerical experiment. The far-field errors incurred by
the three versions were comparable, i.e. of order 10�3 for the coarser discretizations and of order 10�4 for the finer discret-
izations, respectively. Once again we note that the modified formulation (59) produces results about as accurate as those
obtained by the formulation (24) with K ¼ ik=2. Notably, both the CFIE [15] and CFIE-mod [15] formulations require longer
overall computing times than the unregularized CFIE, whereas our CFIE-RK approaches lead to significant overall time savings
over those required by the CFIE.

The computational times reported resulted from a C++ numerical implementation of our algorithm, as described in the
previous sections, that was run on a desktop computer with a single Intel (R) Xeon processor at 2.33 GHz with 2 GB RAM,
running GNU/Linux, and using the GNU/gcc compiler, the PETSC 3.0 library for the fully complex implementation of GMRES,
and the FFTW3 library for evaluation of FFTs. The computational times required by one matrix–vector product for the cases
of the sphere and the ellipsoid are almost identical. The slightly larger computational times required by the bean-shaped
cases arises from our use of larger overlaps between the patches in the chart atlas, which is necessary in this case to achieve
the same level of accuracy as for the sphere and ellipsoid configurations.

Two additional observations can be drawn from the results presented in Table 6: (1) a matrix–vector product resulted
from discretization of the formulations (24) is on average at most 1:6 more computationally expensive than the matrix–vec-
tor product for the CFIE formulation (16) at the same level of discretization; and (2) a matrix–vector product resulted from
discretization of the formulations (58) is on average at most 2.5 more computationally expensive than the matrix–vector
product for the CFIE formulation (16) at the same level of discretization but with some losses of accuracy and larger iteration
numbers. We also mention that in the same computational architecture, the computational cost of one matrix–vector prod-
uct of the CFIE formulation (16) is only two times more expensive than the cost of one matrix–vector product for the com-
bined field formulation for acoustic Dirichlet problem using the algorithm introduced in [7].

To demonstrate the stability of our ICFIE-RK formulation (24) as the frequencies are varied, finally, in Fig. 1 we display the
number of iterations required to reach a GMRES residual of 10�4 using the ICFIE-RK formulation (24) with K ¼ ik=2 and n ¼ 1:
the left and right portions of this figure present results corresponding, respectively, to two different types of incident fields,
namely, point-source incidence of the kind used in Table 6, and plane-wave incidence of the type used in Tables 2–4. For each



Fig. 1. Numbers of iterations to 10�4 GMRES residuals for the ICFIE-RK formulations (24) with n ¼ 1 and K ¼ k=2, for three geometries: unit sphere, ellipsoid
and bean-shaped geometry. Point-source and plane-wave incident fields were used in the left and right figures, respectively. For the left figure the far field
error was computed through comparison with the exact solution, and found to be of the order of 10�4. The figures display the iteration numbers for the
sequence of 320 wavenumbers k ¼ 0:1; 0:2; . . . ;32 and corresponding discretizations that deliver far-field errors of order 10�4. Clearly, the unique
solvability established in Theorems 3.1 and 3.2 is realized in practice: no resonant frequencies were found.
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geometrical configuration and incidence type we present results for 320 wavenumbers k ranging from 0.1 to 32 spaced 0.1
apart. We used discretizations similar to those used otherwise throughout this section, so that 4 digits of accuracy were ob-
tained in the far-field when compared with the exact solutions for point-source incidences or with refined discretizations for
plane-wave incidences. Clearly no resonant frequencies exist, in accordance with the existence and uniqueness proof pre-
sented in Section 3.2.

The results of this section demonstrate the excellent properties of the new regularized integral equations and the asso-
ciated implementation described in Section 4: the new equations are well conditioned, and they can produce highly accurate
solutions in significantly shorter computing times and smaller numbers of iterations than previous approaches.

6. Conclusions

We have introduced novel classes Regularized Combined Field Integral Equations formulations for the solution of Max-
well equations. The equations and high-order implementations introduced in this text provide significant improvements in
accuracy and computational cost over the most competitive (unaccelerated) approaches otherwise in existence today for the
treatment of problems of electromagnetic scattering by perfectly conducting surfaces. In particular, we found that the Reg-
ularized Combined Field Integral Equations ICFIE-RK and DCFIE-RK have excellent spectral properties, as evidenced by the
reduced numbers of iteration required for convergence of the GMRES iterative solver. Corresponding low-iteration-number,
high-accuracy algorithms for treatment of large electromagnetic problems (based on a combination of the main elements
introduced in this text with the equivalent-source acceleration techniques originally introduced in [7] in the acoustic scat-
tering context) will be presented in the forthcoming contribution [9].
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